Next-generation sequencing of melanomas has unraveled critical driver genes and genomic abnormalities, mostly defined as occurring at high frequency. In addition, less abundant mutations are present that link melanoma to a set of disorders, commonly called RASopathies. These disorders, which include neurofibromatosis and Noonan and Legius syndromes, harbor germline mutations in various RAS/mitogen-activated protein kinase signaling pathway genes. We highlight shared amino acid substitutions between this set of RASopathy mutations and those observed in large-scale melanoma sequencing data, uncovering a significant overlap. We review the evidence that these mutations activate the RAS/mitogen-activated protein kinase pathway in melanoma and are involved in melanomagenesis. Furthermore, we discuss the observations that two or more RASopathy mutations often co-occur in melanoma and may act synergistically on activating the pathway.