KrauthammerLab
University of Zurich & University Hospital Zurich
$ health = f(data) $
An introduction to long-read sequencing.
Comparing neural-networks versus logistic regression for predicting readmission.
Assessing the quality of online health information with AI.
Cancer on the cell level.
Novel computational method for drug-drug interaction predictions which are an important consideration for patient treatment.
Using deep learning for automatically generated medical reports describing radiological images.
Base editors are chimeric ribonucleoprotein complexes consisting of a DNA-targeting CRISPR-Cas module and a single-stranded DNA deaminase. They enable conversion of C•G into T•A base pairs and vice versa on genomic DNA. While base editors have vast potential as genome editing tools for basic research and gene therapy, their application has been hampered by a broad variation in editing efficiencies on different genomic loci. Here we perform an extensive analysis of adenine- and cytosine base editors on thousands of lentivirally integrated genetic sequences and establish BE-DICT, an attention-based deep learning algorithm capable of predicting base editing outcomes with high accuracy. BE-DICT is a versatile tool that in principle can be trained on any novel base editor variant, facilitating the application of base editing for research and therapy.
To help patients find high quality health information online, we developed a Deep Learning system that evaluates the quality of online health articles. The system implements the DISCERN criteria, which checks for references, balanced writing, and more.
Healthcare professionals have long envisioned using the enormous processing powers of computers to discover new facts and medical knowledge locked inside electronic health records. These vast medical archives contain time-resolved information about medical visits, tests and procedures, as well as outcomes, which together form individual patient journeys. By assessing the similarities among these journeys, it is possible to uncover clusters of common disease trajectories with shared health outcomes. The assignment of patient journeys to specific clusters may in turn serve as the basis for personalized outcome prediction and treatment selection. This procedure is a non-trivial computational problem, as it requires the comparison of patient data with multi-dimensional and multi-modal features that are captured at different times and resolutions. In this review, we provide a comprehensive overview of the tools and methods that are used in patient similarity analysis with longitudinal data and discuss its potential for improving clinical decision making.